Release of Volatile Odor Compounds from Full-Fat and Reduced-Fat Frankfurters

Fabienne F. V. Chevance[†] and Linda J. Farmer^{*,†,‡}

Department of Food Science, The Queen's University of Belfast, and Department of Agriculture for Northern Ireland, Newforge Lane, Belfast BT9 5PX, United Kingdom

The effect of fat content on the release of volatile aroma compounds from frankfurters has been investigated. Although the release of most *n*-alkanals, alcohols, ketones, and furans was little affected by changes in the fat content of frankfurters, that of monoterpene hydrocarbons, sesquiterpene hydrocarbons, terpenes containing oxygen, cyclopentenones, phenyl propanoids, and phenols was greatly increased when the fat content was decreased. Some odors were also detected more frequently in the low-fat than in the full-fat sausages. These included smoky odors, due to phenols, spicy, synthetic, and floral odors due to terpenes, and meaty, roasted odors caused by sulfur-containing heterocyclic compounds. The release of aroma compounds from frankfurters appears to be closely related to the solvation of these compounds in the lipid phase.

Keywords: Flavor; odor; volatiles; odor compounds; low-fat; frankfurters

INTRODUCTION

Over the past 10 years, consumers' increased awareness of the role of dietary lipids in health issues such as cardiovascular diseases and obesity has induced the expansion of the market for foods with a reduced content of triglyceride lipids. "Low-fat" frankfurters and other processed meats have been developed to supply this market. The textural aspects of low-fat frankfurters have been well documented, and a major problem associated with producing such products is an increase in toughness and rubberiness (Hand et al., 1987; Wirth, 1988; Barbut and Mittal, 1989; Marquez et al., 1989; Park et al., 1989). The influence of fat on the sensory perception of the flavor of frankfurters has also been investigated, but conflicting results have been reported. For example, Park et al. (1989) showed a tendency for higher fat content to give greater scores for overall flavor intensity, whereas Marquez et al. (1989) reported the opposite effect. Recent studies (Solheim, 1992; Hughes et al., 1997: Chevance and Farmer, 1998) have shown that low-fat sausages or frankfurters have increased intensity for certain flavor attributes (e.g., smokiness, spiciness, saltiness) and reduced overall acceptability of the flavor compared with their full-fat counterparts.

The human perception of flavor is closely related to the nature and amount of odor and taste components available to the sensory system (Overbosch et al., 1991). The availability of flavor components to the sensory system is largely dependent on the release of these compounds from the food. Limited information is available on the release of flavor components from full- and low-fat meat products. El-Magoli et al. (1996) investigated the effect of fat content on the release of some volatile compounds from beefburgers, but the results were inconclusive. Recent studies on other types of lowfat foods, such as biscuits (Ingham et al., 1996) or cheese (Piraprez et al., 1998), suggested that flavor changes were caused by the retention of selected flavor volatiles by fat in these food matrices. Numerous studies on oil– water models, designed to mimic foods, have also shown that increased concentrations of oil decreased the release of flavor compounds in the headspace as a result of the solubility of these components in lipids (Buttery et al., 1973; Land, 1979; De Roos and Wolswinkel, 1994; Salvador et al., 1994; Schirle-Keller et al., 1994; Landy et al., 1996).

The volatile aroma compounds detected in frankfurter sausages have been identified and reported in a previous paper (Chevance and Farmer, 1999). The present study was designed to evaluate the effect of fat content on the release of these aroma compounds.

MATERIALS AND METHODS

Materials. Low-fat, medium-fat, and full-fat frankfurters were prepared at the National Food Centre (Dublin, Ireland) by adjusting the amount of pork adipose tissue (back fat) included in the composition to give nominal fat contents of 5, 12, and 30%. In this paper, the term "fat" refers to the mixture of triglyceride lipids from this source. In the reduced-fat products, water was added to replace the fat to ensure the same protein content in all formulations. Smoke was included as a liquid smoke flavoring (0.05%; hickory smoke, D402V, Dalgety Food Ingredients, Dublin, Ireland) to ensure homogeneity of the smoke components from batch to batch. The other ingredients, preparation, and proximate analysis of these frankfurters have been reported previously (Hughes et al., 1997).

Comparison of Total Volatiles. The relative quantities of total volatiles present in the different frankfurters were determined using a steam distillation extraction method (Nickerson and Likens, 1966) followed by GC/MS. The volatile compounds from frankfurters were extracted into 20 mL of pentane (A.R., Rhone Poulenc Ltd., Manchester, U.K.) over a period of 2 h. Bromobenzene (Aldrich Chemical Co. Ltd., Dorset, U.K.) was added to the solvent as an internal standard (10 μ L, 2980 ng μ L⁻¹) prior to collection. Full experimental details have been given in a previous paper (Chevance and Farmer, 1998). Three replicate extractions were conducted on the frankfurters containing 5 and 30% fat, and the volatile

^{*} Author to whom correspondence should be addressed [fax

^{+ 44 (0) 1232 669551;} e-mail Linda.Farmer@dani.gov.uk].

[†] The Queen's University of Belfast.

[‡] Department of Agriculture for Northern Ireland.

compounds collected were analyzed using an HP 5890 Series 2 gas chromatograph (Hewlett-Packard, Wokingham, Berks, U.K.) connected to an HP 5971 mass selective detector, operated at 70 eV in the EI mode over the range 35-450 amu. After desorption (5 min) onto the front of the column (CPWax52CB, 50 m \times 0.32 mm i.d., Chrompack Ltd., London, U.K.), which was immersed in liquid nitrogen, the volatile components were analyzed using an oven program starting at 40 °C for 5 min, increased to 220 °C at 4 °C min⁻¹, and maintained at 220 °C for 30 min. Peak areas were determined by dividing the area of a selected ion of the compound by its relative abundance in the mass spectrum. Peak areas were expressed relative to the area given by 1 ng of bromobenzene (internal standard), and means of relative peak areas were calculated and analyzed by analysis of variance using a Genstat statistical software package (Genstat V, release 3.1, Lawes Agricultural Trust, Rothamsted Experimental Station). Where the effect of treatment was significant, a Fisher's least significant difference test was applied to the mean scores.

Comparison of Volatiles Released into the Headspace. The relative quantities of volatiles released from the different frankfurters were obtained using a dynamic headspace collection method, followed by GC/MS. A stream of nitrogen (50 mL/min for 30 min) swept the volatiles released from frankfurters (50 g), held at 70 °C, onto a conditioned glass-lined stainless steel trap (2.6 mg Tenax GC; Scientific Glass Engineering Ltd., Milton Keynes, U.K.). An internal standard (0.5 μ L; 74.5 ng μ L⁻¹ bromobenzene in ethanol) was added to the conditioned trap prior to the collection. A flow of nitrogen (50 mL min⁻¹) was used to remove excess solvent from the trap after addition of standard and residual water after collection of volatiles. Three collections of this type were performed on each of the frankfurters, and the volatiles collected were analyzed using an HP 5890A gas chromatograph connected to an HP 5970 mass selective detector, operated at 70 eV in the EI mode over the range 35-450 amu. The volatile compounds were chromatographed as described above, except that the oven program was maintained at 60 °C for 5 min before increasing at 4 °C min⁻¹ to 220 °C (30 min). Relative peak areas were calculated and analyzed as described above.

Comparison of Odors. A static headspace collection method was used to collect odor compounds from frankfurters prior to GC/odor assessment. The method, which has been described previously (Chevance and Farmer, 1999), involved the displacement of the volatiles onto a Tenax trap using the pressure of air (10 mL) injected by a syringe into a sealed bottle (100 mL) containing frankfurters (20 g) held at 70 °C. Six collections of this type were conducted on each type of frankfurter (5, 12, and 30% fat). GC was performed in an HP 5890 Series II gas chromatograph fitted with a Unijector (Scientific Glass Engineering Ltd.), using the same oven program as for the volatiles collected by dynamic headspace collection. The effluent from the column was split between a flame ionization detector and an odor port (Chevance and Farmer, 1999). GC/odor assessments were conducted in duplicate by three assessors on each of the frankfurters.

RESULTS AND DISCUSSION

Seventy compounds in the headspace and 66 volatile compounds extracted by simultaneous distillation extraction (SDE), in three types of frankfurters, have been subjected to semiquantitative analysis (Tables 1 and 2). In each case the relative peak area for each compound is given, together with the total relative peak area for each compound class. Most compound classes were released in greater quantities from the low-fat frankfurters than from the medium- or full-fat frankfurters. However, some differences were also detected in the quantities of volatiles extracted by SDE. These data are compared to determine the effect of reduced fat content on the individual compounds listed. The intensities and frequencies of detection of the key odors for the three types of frankfurters are compared in Table 3. Most of the individual odors were detected more often in the low-fat than in the full-fat frankfurters.

The volatile odor compounds in frankfurters include aliphatic compounds, mainly from lipid oxidation, sulfurcontaining compounds and other products from the Maillard reaction, terpenes from the added spices, and phenols from the smoke (Chevance and Farmer, 1999). The effect of fat content will be discussed for each of these compound groups in turn.

Aliphatic Compounds. A comparison of the relative quantities of *n*-alkanals, alcohols, ketones, and furans released (Table 1) or present (Table 2) in the frankfurters suggests that these compounds were little affected by changes in the fat content of frankfurters. For example, the tendency of *n*-alkanals to be released in greater quantities from the low-fat frankfurters (Table 1) was in fact due to the differences in original quantities of volatiles present in the frankfurters (Table 2) and not the effect of flavor release. Similar quantities of furans were released from the three types of frankfurters (Table 1), and the original quantities of compounds available were also similar in all frankfurters (Table 2). The same observations may be made about four of the ketones. Studies investigating the effect of fat content on the flavor release from other types of foods showed different results for some of the above classes of compounds. For example, Ingham et al. (1996) observed larger amounts of benzaldehyde released from low-fat biscuits in comparison to full-fat biscuits, and Piraprez et al. (1998) found that the release of aldehydes and methyl ketones was increased in a low-fat cheese matrix in comparison to the full-fat matrix. In these studies, the quantities of volatile compounds originally present in the food matrix were not reported, which may account for the different results. The effect of fat on the perception of key odor compounds belonging to this class of compound varied (Table 3). The odor due to 1-octen-3one ("mushroom") was not detected in the full-fat product by any of the assessors, whereas it was always detected in the low-fat product. It was not possible to monitor the release of this compound by GC/MS due to its small quantity. An unidentified alcohol could be responsible for the "metallic, geranium, stale" odor at LRI 1203 (Table 3), which showed little change. Sensory studies conducted on these frankfurters showed that the perception of "fatty" flavors was not affected by the fat content (Chevance and Farmer, 1998). Thus, in most cases, the release of lipid oxidation-derived odor compounds is not affected by fat content, although the quantities present in the product may alter.

Sulfur-Containing Compounds. Several furanthiols and sulfur-containing compounds have also been identified as key odor compounds in frankfurters (Chevance and Farmer, 1999). These compounds are formed by Maillard pathways involving cysteine, or possibly from the thermal degradation of thiamine (Mottram, 1991). It was not possible to monitor the effect of fat on the release of these compounds by GC/MS, due to the small quantities, but GC/odor assessment (Table 3) indicated a tendency for certain odors, such as "meaty, cereal" (due to 2-methyl-3-furanthiol; LRI 1321), "roasty, meaty" (2-furanmethanethiol; LRI 1430), "meaty, biscuity, roasty, popcorn" (2-acetylthiazoline; LRI 1751),

Table 1.	Effect of Fat	on Relative Pea	k Areas ^a foi	 Selected Con 	omponents Rel	leased from I	Frankfurters
----------	---------------	-----------------	--------------------------	----------------------------------	---------------	---------------	--------------

			frankfurters							
IDI			30% fat 12% fat			fat	5% fat			
CBWax	compound	ions	mean	SD	mean	SD	mean	SD	signif ^b	SEM ^c
	aldahydaa	10115	moun	55	moun	02	moun		5-8	
1070	hexanal	72	18500	6740	16400	3390	20100	4310	NS	3000
1181	heptanal	81	6530	2570	6510	600	11000	4320	NS	1620
1280	octanal	84	2410	1250	2430	466	6430	3100	NS	1150
1383	nonanal	82	8880	4580	9130	2340	24200	12900	NS	4600
1216	2-hexenal	98	175	12	810 ^e		223^{e}			
1313	2-heptenal	83	1450	705	915 0070rs	67	689	482	NS	300
1508	benzaldehyde	105	1840	<i>992</i>	2070 ¹³	317	3990°	999	Ť	490
		subtotal:	39785		38265		66632			
	alcohols									
1241	1-pentanol	70	1963	760	1140	123	1190	103	NS	250
1395	2-butoxyethanol	75	790	398	718	174	1890	804	NS	200
	Ū.	subtotal	2753		1858		3080			
		Subtotui.	2100		1000		0000			
	ketones									
1328	6-methyl-5-hepten-2-one	108	820 ^r	381	1250 ^{rs}	158	5170 ^s	2580	*	850
1280	cyclohexanone	83	4050 ^s	1440	1600 ¹	144	2260	304	* NC	530
1341	2-cyclopenten-1-one 2-methyl-2-cyclopenten-1-one	82 67	534 2870	278 1710	435 2780	333	3030	137	NS NS	650
1432	a dimethyl-2-cyclopenten-1-one	110	2070 375r	1410	513 ^{rs}	42	852 ^s	242	*	90
1521	2,3-dimethyl-2-cyclopenten-1-one	110	1180	660	1330	372	2290	878	NS	390
1611	2(3H)-dihydrofuranone	42	235	99	174	64	388	288	NS	95
		subtotal:	10064		8082		15449			
	furans									
1224	2-pentylfuran	138	119	99	75	10	201	55	NS	46
1400	2-iuriurai 2 acotylfuran	90	2490 2820	2470 1320	4000	037 210	2310 4620	1230	NS NS	940 670
1495	5-methyl-2-furfural	110	1970	943	1340	302	1870	620	NS	390
1000			10000	010	0077	002	10000	020	110	000
		subtotal:	10399		8855		12002			
	benzenes									
1024	methylbenzene	92	970	173	913	226	910	142	NS	110
1115	ethylbenzene	91	2680	1420	2410	1000	2290	1710	NS	810
1123	1,4-dimethylbenzene	91	1170	318	1510	369	1560	544	NS	250
1129	1,3-dimethylbenzene	105	1890	716	2520	392	3080	1060	NS	420
1210	styrene	104	230 284r	10	200 267r	32	420 673s	322	*	100
1324	1.2.3-trimethylbenzene	120	93	13	112	32	171	109	NS	30
1425	a methyl (1-methylethyl) benzene	117	2740 ^r	2540	6640 ^r	2760	13600 ^s	3920	*	1800
1898	BHT	205	246	187	134	78	853	1120	NS	380
		subtotal:	10303		14842		23564			
1014	monoterpene hydrocarbons	100	1400	001	1000	000	0000	700	NG	000
1014	α-pinene	136	1480	201	1690	383	2300	/99	NS NC	300
1018	$\beta_{-ninene}$	70	2030	915 382	3170	1440	5060 5060	003 1510	NS	580
11102	sabinene	77	17400 ^r	3660	17300 ^r	1620	36500 ^s	12900	*	4480
1136	3-carene	121	3580	709	3420	748	4340	2340	NS	850
1157	β -myrcene	69	52300 ^r	16700	61900 ^{rs}	14800	107000 ^s	30400	*	12600
1168	α-terpinene	136	17900	14700	16300	6830	24800	3240	NS	5500
1192	limonene	121	106000 ^r	20800	126000 ^r	6460	217000 ^s	38100	**	14600
1205	β -phellandrene	130	8070 ⁴ 21000r	1000 8410	9700 ⁴ 20500r	1340	15400°	2870	**	5650
1239	β -ocimene	121	7310 ^r	3070	12100 ^r	4400	21600 ^s	3310	**	2120
1260	<i>p</i> -cymene	119	27210	11000	31000	14100	48700	18900	NS	8660
1273	α-terpinolene	105	19500 ^r	11900	32800 ^r	1320	67900 ^s	13500	**	6020
		subtotal:	297710		358450		622490			
4	sesquiterpene hydrocarbons									
1479	α-copaene	161	2580	2340	4260	1090	6730	1470	NS	990
1304	ρ -caryophyllene	204	22000 ⁴ 1770r	12100	2170r	80/U 010	34200° 197008	1990 5690	*	026U 1900
1713	α-zingihirene	119	1770 ^r	903 1210	42.90r	540 1610	19500s	3020 8000	*	2980
1745	δ -cadinene	161	940 ^r	480	1630 ^r	385	5370 ^s	898	***	350
1756	α-farnesene	119	14800 ^r	6220	29900 ^r	8430	91900 ^s	17700	***	6780
1764	<i>ar</i> -curcumene	145	3400 ^r	1780	6750 ^r	2470	20000 ^s	2140	***	1190
		subtotal:	47260		78800		210400			

			frankfurters							
LRI		selected	30%	fat	12%	fat	5% f	at		
CBWax	compound	ions	mean	SD	mean	SD	mean	SD	signif ^b	\mathbf{SEM}^{c}
	terpenes with oxygen									
1196	1,8-cineole	111	1290	201	1830	868	1870	328	NS	270
1538	sabinene hydrate isomer	121	249	244	334	317	555	430	NS	230
1548	linalool	121	32400 ^r	12000	46500^{r}	2530	79900 ^s	14800	**	6460
1559	isobornyl acetate	196	380	73	1330	489	1430	776	NS	360
1588	terpinen-4-ol	154	16900 ^r	5500	24200 ^r	1020	37200 ^s	7020	**	2900
1691	α-terpineol	136	34000	27800	37600	24900	104000	59200	NS	24500
1718	<i>I</i> -carvone	108	1840^{r}	1060	$3000^{\rm r}$	696	8270 ^s	2160	**	820
		subtotal:	87059		114794		233225			
	terpenoid phenols									
1656	estragole	121	1970	2470	3460	1100	15000	15100	NS	6200
1854	safrole	131	7690 ^r	4040	14200 ^r	3140	42800 ^s	8960	* * *	7140
2008	cis-methylisoeugenol	178	489 ^r	365	1150 ^r	456	3800 ^s	539	* * *	300
2162	eugenol	149	5570 ^r	4850	10600 ^r	4040	28000 ^s	7420	**	3200
2228	elemicin	193	813 ^r	863	1790 ^r	1310	5770 ^s	1760	*	800
2262	myristicin	161	7840^{r}	5510	15700 ^s	5580	47800^{t}	7560	***	17100
		subtotal:	24372		46900		143170			
	phenols									
1850	2-methoxyphenol (guaiacol)	124	8030 ^r	4740	11600 ^{rs}	2550	22100 ^s	7410	*	3040
1949	4-methylguaiacol	138	4310 ^r	2980	7480 ^r	2170	16600 ^s	5070	*	2100
2000	2-methylphenol	108	635^{r}	402	1010 ^r	177	2120 ^s	783	*	300
2000	phenol	66	1660	532	1850	164	3940	2620	NS	900
2024	4-ethylguaiacol	137	710 ^r	532	1410 ^r	484	3800 ^s	1140	**	450
2076	dimethylphenol	107	760 ^r	524	1200 ^{rs}	282	2600 ^s	1070	*	420
2103	4-propylguaiacol	137	94 ^r	76	191 ^{rs}	73	612 ^s	187	**	70
2168	dimethylphenol	107	$795^{\rm r}$	549	1260 ^r	296	2720 ^s	1120	*	290
		subtotal:	16994		26001		54492			

^{*a*} Relative peak areas are expressed as the mean (three replicate analyses for each treatment) and standard deviation, relative to the peak area given by 1 ng of bromobenzene =100. Values >1000 are stated to three significant figures. Values in bold are the sum of relative peak area values for the given compound class. ^{*b*} Degree of significance among the three frankfurters (analysis of variance): NS, no significant difference; *, P < 0.05; **, P < 0.01; ***, P < 0.001. ^{*c*} SEM, standard error of mean. ^{*d*} For each compound, values that do not share a common superscript (r, s, t) are significantly different (P < 0.05) according to Fisher's LSD test. ^{*e*} Single observation.

and "potatoes, biscuity, roasted meat" (methional plus an unknown meaty compound; LRI 1451), to be perceived more frequently and to give more intense odors in the low-fat frankfurters. However, the odors "meaty, roasty, metallic" (dimethyl trisulfide; LRI 1373) and "meaty, roasty, biscuity" [2-methyl-3-(methyldithio)furan; LRI 1663] appeared to be unaffected or only slightly affected by the change in fat content in frankfurters, possibly due to their relatively intense odors even when static headspace techniques are used. In contrast, Piraprez et al. (1998) found that dimethyl trisulfide was largely retained in a full-fat cheese matrix in comparison to a low-fat one. Two compounds that may contribute to the perceived difference in flavor between the low-fat and full-fat frankfurters are those responsible for the "sweet, meaty, roasty" and "popcorn, biscuity" odors at LRI 1177 and 1613, which show a clear change in roasty-biscuity intensity and frequency of detection (Table 3). Unfortunately, these compounds are, as yet, unidentified, but, from the nature of their aromas, they may be derived from similar pathways to the above compounds. The fact that sensory studies showed that overall meaty flavor was largely unaffected by changes in fat content (Chevance and Farmer, 1998) suggests that these small changes in aroma intensity had a minor effect on the overall flavor.

Terpenes and Phenols. The compounds most affected by fat content included the classes of monoterpene and sesquiterpene hydrocarbons, terpenes containing oxygen, cyclopentenones, phenyl propanoids, and phenols (Tables 1 and 2). These compounds have been found

to be derived from the spices or smoke incorporated to these frankfurters (Chevance and Farmer, 1999). For a number of these compounds, significantly greater quantities were released from the low-fat frankfurters, and most of those compounds for which the difference was not significant showed the same trend (Table 1). Because the same amounts of spices and smoke were incorporated into the different frankfurters, it was not surprising to find that the relative quantities of these compounds extracted from 5 and 30% fat frankfurters were very similar (Table 2), confirming that the observed differences in headspace were due to differences in flavor release. Fat content also showed an effect on some key odor compounds belonging to these classes of compounds (Table 3). The frequency of detection and intensity of the odors at LRI 1026 and 1541 ("spices, green, pine needles" and "floral"), due to α -pinene and linalool, were slightly greater for the low-fat and/or the medium-fat frankfurters than for the full-fat frankfurters (Table 3). The intensity of odors was unaffected for 1,8-cineole, probably due to the fact that it was consistently detected by all assessors; at this concentration there was little discrimination between samples. The 2-5-fold increase in the release of these terpenes and the less distinct increase in frequency of odor detection explain the increased perception of "peppery", "spicy," and perhaps "synthetic" flavors detected by sensory profiling studies (Chevance and Farmer, 1998). Even among terpenes, the effect of fat varies among compound classes. For example, sesquiterpene hydrocarbons are more affected by fat content than monoterpene

Table 2. Effect of Fat on Relative Peak Areas^a for Selected Components Extracted from Frankfurters

			frankfurters					
IDI		coloctod	30%	fat	5% f	at		
CPWax	compound	ions	mean	SD	mean	SD	signif ^b	SEM ^c
		10115	mean	55	mean	50	Jigilli	
1095	aldehydes	70	90900	2100	40100	25000	NC	15000
1085	hentonol	12	20200	3160	49100	33000	INS	15600
11/9	neptanal	90 84	8410 3270	1880	6310	7390 2080	INS NS	3400
1283	nonanal	04	8800	2110	24600	2300 8720	*	3950
1506	benzaldehvde	105	8670	1780	8510	1400	NS	900
2109	hexadecanal	110	65900	8290	28100	5450	***	3800
2100	hexadecunar		445050	0200	20100	0100		0000
		subtotal:	115250		133220			
	alcohols							
1353	1-hexanol	84	570	540	2750	500	*	380
	ketones							
1330	6-methyl-5-hepten-2-one	126	4770	650	2180	226	***	330
1354	2-methyl-2-cyclopenten-1-one	67	885	300	859	330	NS	180
1430	a dimethyl 2-cyclopenten-1-one	110	547	119	558	202	NS	93
1498	3-methyl-2-cyclopenten-1-one	67	4350	1690	4900	772	NS	707
1524	2,3-dimethyl-2-cyclopenten-1-one	95	5240	4280	3890	939	INS	1580
		subtotal:	11022		10207			
	6 ··· · · · ·							
0000	fatty acids	100	75700	07000	00500	0700	* *	10000
2680	tetradecanoic acid	129	/5/00	27600	20500	3500	NC	10200
2922	nexauecanoic aciu	165	90100	17400	73400	14300	183	8910
		subtotal:	171800		95900			
	6							
1400	furans	110	5000	057	1750	700	NC	460
1498	2-acetynuran 2 furfural	110	5090 0050	937	4730	1600	IND	400
1402	5-methylfurfural	109	4670	1680	8720	1640	*	820
1507	5-metrynururar	105	4070	1000	0720	1040		000
		subtotal:	19410		23160			
	monoternene hydrocarbons							
1014	α-pinene	136	492000	145000	543000	56400	NS	58700
1047	camphene	136	70800	28900	86600	7660	NS	11120
1099	β -pinene	69	665000	163000	728000	81400	NS	69650
1107	sabinene	77	581000	132000	576000	58100	NS	54890
1130	3-carene	121	126000	29300	134000	18500	NS	13500
1157	β -mircene	69	82100	24200	41600	10000	*	9900
1163	a-terpinene	121	9170	3090	9400	1770	NS	1390
1188	limonene	121	436000	114000	427000	49600	NS	47200
1205	β -phellandrene	121	56900	3880	56900	8820	NS	4210
1236	γ-terpinene	121	183000	37000	151000	18600	NS	15900
1207	p-cymene	119	192000	42600	191000	20900	INS	18200
1281	a-terpholene	105	69000	10000	20800	0320	IND	6700
		subtotal:	2962970		3001300			
	sasquitarnana hydrocarhans							
1476	g-consene	161	15300	5820	27600	3490	*	2600
1581	β-carvonhyllene	204	79900	25400	119000	43300	NS	21700
1637	α -carvophyllene	147	16300	6200	20900	1980	NS	2370
1710	α-zingibirene	119	3000	1480	6720	687	*	600
1745	δ -cadinene	161	9140	3860	13600	1730	NS	1600
1764	<i>ar</i> -curcumene	145	43200	17900	66600	8890	NS	7740
		subtotal:	166840		254420			
		Subtotui	100010		201120			
	terpenes with oxygen							
1191	1,8-cineole	111	212000	17400	194000	26900	NS	13600
1534	sabinene hydrate isomer	154	249000	24700	230000	37100	NS	18900
1546	linalool	121	433000	33300	324000	46700	*	24200
1551	<i>cis</i> -sabinene hydrate	154	86400	31400	43300	9900	* NC	12300
1568	isopornyi acetate	196	10400	3550	10400	845	INS **	1400
1000	n 2 monthon 8 ol	104	202000	43000 1990	380000	043UU 1710	***	32800 1700
1697	p - α -menulell-0-01 α -terninyl acetate	104	33000 330000	433U 19100	201000	1740 17000	NS	26400
1700/	nineritone	130 89	10/0	42100 622	291000 9150	47900 215	NC	20400 200
1718	l-carvone	108	5000	5610	3030	871	NS	2090
1839	<i>p</i> -cymen-8-ol	135	9500	1070	5560	830	**	500
1842	trans-geraniol	69	15700	13400	10700	859	NS	4900
	0	subtotal	9056740		1519040			
		SUULULAE	WUUU/411		1,1161/41			

Table 2 (Continued)

			frankf	urters				
LRI		selected	30%	fat	5%	fat		
CPWax	compound	ions	mean	SD	mean	SD	signif ^b	SEM ^c
	terpenoid phenols							
1857	safrole	135	133000	15100	89800	11300	**	7500
2155	eugenol	149	321000	4840	129900	24400	***	11000
2228	elemicin	193	116000	6470	44300	7380	***	4050
2262	myristicin	161	355000	20700	158700	21000	***	12100
2399	isoelemicin	208	3460	71	670	103	* * *	60
		subtotal:	928460		423370			
	phenols							
1851	2-methoxyphenol (guaiacol)	124	28900	4960	16200	4380	*	2700
1933	a methylguaiacol	123	491	175	311	36	NS	60
1957	4-methylguaiacol	138	44900	3170	18600	4590	***	2350
2000	2-methylphenol	108	1340	129	799	395	NS	180
2000	phenol	94	351	46	511	665	NS	300
2020	4-ethylguaiacol	137	14100	108	4000	789	***	350
2068	2-ethylphenol	107	768	153	574	136	NS	80
2073	2,5- or 2,4-dimethylphenol	107	4450	344	2380	407	***	230
2088	a methylphenol	107	1270	40	716	206	*	100
2099	4-propylguaiacol	137	4050	168	923	100	***	80
2266	2,6-dimethoxyphenol (syringol)	154	877	137	504	89	**	60
2349	4-methylsyringol	168	232	99	116	24	NS	40
		subtotal:	101729		45634			
	other							
1357	dimethyl trisulfide	79	3390	595	4440	823	NS	430
2407	unknowns 182, 167	182	2890	268	533	99	***	100
		subtotal:	6280		4973			

^{*a*} Relative peak areas are expressed as the mean (three replicate analyses for each treatment) and standard deviation, relative to the peak area given by 1 ng of bromobenzene = 100; values >1000 are stated to three significant figures. Values in bold are the sum of relative peak area values for the given compound class. ^{*b*} Degree of significance among the three frankfurters (analysis of variance): NS, no significant difference; *, P < 0.05; **, P < 0.01; ***, P < 0.001. ^{*c*} SEM, standard error of means.

|--|

			frequency of de from frankfurt		ection of odor rs containing	
LRI ^a	odor	possible compound	5% fat	12% fat	30% fat	
982	caramel, fudge, vanilla	2,3-butanedione	5 (3) m ^b	5 (2) W	6 (3) m	
1026	spices, green, pine needles	α-pinene	2 (1) W	2 (1) W	1 (1) <i>vw</i>	
1114	stale, sulfurous, vegetation	unknown	2 (2) W	2 (2) W	3 (2) W	
1164	vegetable, grassy, green	unknown	1 (1) W	3 (2) W	nd	
1177	sweet, meaty, roasted	unknown	6 (3) W	1 (1) <i>vw</i>	nd	
1203	metallic, geranium, stale	an unsaturated alcohol	4 (3) w	4 (3) W	3 (2) m	
1205	medicinal, cough syrup, eucalyptus, pine needles	1,8-cineole	6 (3) m	6 (3) m	6 (3) <i>m</i>	
1240	stale, damp, green, stagnant	unknown	3 (3) W	1 (1) <i>vw</i>	2 (2) W	
1300	mushrooms	1-octen-3-one	4 (3) W	4 (3) W	nd	
1321	meaty, cereal	2-methyl-3-furanthiol	2 (2) VW	1 (1) <i>vw</i>	1 (1) W	
1373	meaty, roasty, metallic, geranium	dimethyltrisulfide	6 (3) W	6 (3) W	6 (3) <i>VW</i>	
1430	roasty, meaty	2-furanmethanethiol	3 (2) W	3 (2) W	nd	
1451	potatoes, biscuity, roasted meat	methional	6 (3) W	4 (2) W	4 (3) <i>VW</i>	
1505	raw potatoes, stale, metallic	2-acetylfuran + unknown	4 (2) m	4 (2) W	4 (3) W	
1541	floral	linalool	2 (1) m	3 (2) W	1 (1) m	
1613	pop corn, biscuity	unknown	4 (3) m	2 (1) VW	nd	
1663	meaty, roasty, biscuity	2-methyl-3-(methyldithio) furan	5 (3) W	5 (3) W	5 (3) W	
1733	medicinal, sl. faecal, plastic	unknown	3 (2) m	3 (2) W	2 (1) W	
1751	meaty, biscuity, roasted, popcorn	2-acetylthiazoline	4 (2) m	3 (2) W	3 (2) W	
1852	smoky, frankfurter	2-methoxyphenol	6 (3) m	6 (3) m	6 (3) W	
1934	smoky, frankfurter	2-methoxy-4-methylphenol	4 (3) W	4 (3) W	3 (2) W	
2081	burning, plastic, stale, gassy	2-methoxy-4-propylphenol	5 (3) W	4 (2) VW	3 (2) VW	
2150	sausage meat, eucalyptus, sweet	unknown	4 (2) m	2 (1) W	4 (2) W	
2222	mushrooms	unknown	2 (1) W	1 (1) <i>VW</i>	1 (1) VW	
2264	smoky, frankfurter, burnt	2,6-dimethoxyphenol	2 (1) VW	1 (1) <i>vw</i>	nd	

^{*a*} Linear retention indices on a CPWax 52 CB capillary column. ^{*b*} nd, odor not detected. Numbers in bold correspond to frequency of detection out of six runs; numbers in parentheses correspond to the number of assessors having detected the odor out of three assessors; letters in italics indicate approximate intensity of odor when detected (vw, very weak; w, weak; m, medium; s, strong; vs, very strong).

hydrocarbons, and, within the same class of compounds, the compounds with higher molecular weight appear to be more affected by the variation of fat. The "smoky" odors at LRI 1934, 2081, and 2264, due to 2-methoxy-4-methylphenol (4-methylguaiacol), 2-methoxy-4-propylphenol (4-propylguaiacol), and 2,6-

dimethoxyphenol (syringol), respectively, were also consistently detected more frequently in the low-fat frankfurters than in the other fat versions (Table 3). 2-Methoxyphenol was consistently detected by all assessors and was, therefore, probably too intense to allow discrimination among samples. These results agree with the increased perception of "smoky" flavor in low-fat frankfurters, as measured by sensory studies (Chevance and Farmer, 1998).

Studies conducted using simple emulsion-based model systems have shown that a reduction of oil increases the release of fat-soluble compounds (e.g., limonene, ethyl heptanoate, δ -decanolactone, *cis*-3-hexanol) and, hence, increases their sensory perception (Schirle-Keller et al., 1994; Guyot et al., 1996; Widder and Fischer, 1996). In contrast, the quantity and perception of diacetyl, a water-soluble compound, showed less change. Some authors have found that the effect of oil reduction is more pronounced as the chain length of a compound in a homologous series and, therefore, its hydrophobicity, increase (Buttery et al., 1973; Landy et al., 1996). A similar effect is observed with some of the data obtained in these studies. Figure 1 shows the ratio of volatile release between 5% fat and 30% fat frankfurters plotted against reported oil-water partition coefficients (Doerr and Fiddler, 1970) for a homologous series of phenols. The effect of fat on release appears to be greater for the higher molecular weight compounds, although the rate of increase in the ratio of volatile release between 5% fat and 30% fat frankfurters seems to decrease as the partition coefficient increases. It will be necessary to obtain reliable partition coefficients for a wider range of compounds to allow this relationship to be studied further. However, the above data are consistent with a hypothesis that fat is acting as a solvent for volatile flavor compounds, thus delaying the release of flavor in higher fat products.

LITERATURE CITED

- Barbut, S.; Mittal, G. Influence of K⁺ and Ca²⁺ on the rheological and gelation properties of reduced fat pork sausages containing carrageenans. *J. Food Sci. Technol.* **1989**, *22*, 124–132.
- Buttery, R. G.; Guardagni, D. G.; Ling, L. C. Flavor compounds: Volatilities in vegetable oil and oil-water mixtures. Estimation of odor thresholds. *J. Agric. Food Chem.* **1973**, *21*, 198–201.

- Chevance, F. F. V. Effect of fat on the release of volatile aroma compounds from frankfurters. Ph.D. Thesis, The Queen's University of Belfast, U.K., 1998.
- Chevance, F. F. V.; Farmer, L. J. Influence of fat on the flavour of an emulsified meat product. In *Food Flavors: Formation, Analysis and Packaging Influences*; Contis, E., Ho, C. T., Mussinan, C., Parliment, T., Shahidi, F., Spanier, A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1998; pp 255–270.
- Chevance, F. F. V.; Farmer, L. J. Identification of major volatile and volatile odor compounds from frankfurters. *J. Agric. Food Chem.* **1999**, *47*, 5151–5160.
- Delahunty, C. M.; Piggott, J. R.; Conner, J. M.; Paterson, A. Low-fat cheddar cheese flavour: flavour release in the mouth. In *Trends in Flavour Research, 7th Weurman Flavour Research Symposium*; Maarse, H., van der Heij, D. G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1994; pp 47–52.
- De Roos, K. B.; Wolswinkel, K. Nonequilibrium partition model for predicting flavour release in the mouth. In *Trends in Flavour Research, 7th Weurman Flavour Research Symposium*; Maarse, H., van der Heij, D. G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1994; pp 15–32.
- Doerr, R. C.; Fiddler, W. Partition ratios of some wood smoke phenols in two oil: water systems. *J. Agric. Food Chem.* **1970**, *18*, 937–939.
- El-Magoli, S. B.; Laroia, S.; Hansen, P. M. T. Flavor and texture characteristics of low fat ground beef patties formulated with whey protein concentrate. *Meat Sci.* **1996**, *42*, 179–193.
- Guyot, C.; Bonnafont, C.; Lesschaeve, I.; Issanchou, S.; Voilley, A.; Spinnler, H. E. Relationships between odorous intensity and partition coefficients of δ-decalactone, diacetyl and butyric acid in model emulsions. In *Flavour Science: Recent Developments, 8th Weurman Flavour Research Symposium*, Taylor, A. J., Mottram, D. S., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 1996; pp 380–385.
- Hand, L. W.; Holligsworth, C. A.; Calkins, C. R.; Mandigo, R. W. Effects of preblending, reduced fat and salt levels on frankfurters characteristics. *J. Food Sci.* **1987**, *52*, 1149–1151.
- Hughes, E.; Cofrades, S.; Troy, D. J. Effects of fat level, oat fibre and carrageenan on frankfurters formulated with 5, 12, and 30% fat. *Meat Sci.* **1997**, *45*, 273–281.
- Ingham, K. E.; Taylor, A. J.; Chevance, F. F. V.; Farmer, L. J. Effect of fat content on volatile release from foods. In *Flavour Science: Recent Developments, 8th Weurman Flavour Research Symposium*; Taylor, A. J., Mottram, D. S., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 1996; pp 386-391.
- Land, D. G. Some factors influencing the perception of flavour contributing substances in food. In *Progress in Flavour Research, 2nd Weurman Flavour Research Symposium*; Land, D. G., Nursten, H., Eds.; Applied Science Publishers: London, U.K., 1979; pp 53–66.
- Landy, P.; Courthaudon, J.-L.; Dubois, C.; Voilley, A. Effect of interface in model food emulsions on the volatility of aroma compounds. J. Agric. Food Chem. 1996, 44, 526–530.
- Marquez, E. J.; Ahmed, E. M.; West, R. L.; Johnson, D. D. Emulsion stability and sensory quality of beef frankfurters produced at different fat or peanut oil levels. *J. Food Sci.* **1989**, *54*, 867–870, 873.
- Mottram, D. S. Meat. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Dekker: New York, 1991; pp 107–177.
- Nickerson, G. B.; Likens, S. T. Gas chromatographic evidence for the occurrence of hop oil components in beer. J. Chromatogr. 1966, 21, 1–5.
- Overbosch, P.; Afterof, W. G. M.; Haring, P. G. M. Flavor release in the mouth. *Food Rev. Int.* **1991**, *7*, 137–184.
- Park, J.; Rhee, K. S.; Keeton, J. T.; Rhee, K. C. Properties of low-fat frankfurters containing monounsaturated and omega-3 polyunsaturated oils. J. Food Sci. 1989, 54, 500–504.

- Salvador, D.; Bakker, J.; Langley, K. R.; Potjewijd, R.; Martin, A.; Elmore, J. S. Flavour release of diacetyl from water, sunflower oil and emulsions in model systems. *Food Qual. Pref.* **1994**, *5*, 103–107.
- Schirle-Keller, J. P.; Reineccius, G. A.; Hatchwell, L. C. Flavor interactions with fat-replacers: Effect of oil level. *J. Food Sci.* **1994**, *59*, 813–815, 875.
- Solheim, R. Consumer liking for sausages affected by sensory quality and information on fat content. *Appetite* **1992**, *19*, 285–292.
- Widder, S.; Fischer, N. Measurement of the influence of food ingredients on flavour release by headspace gas chroma-

tography-olfactometry. In *Flavour Science: Recent Developments, 8th Weurman Flavour Research Symposium*, Taylor, A. J., Mottram, D. S., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 1996; pp 405–412.

Wirth, F. Technologies for making fat-reduced meat products. *Fleischwirtsch* **1988**, *68*, 1153–1156.

Received for review May 14, 1999. Revised manuscript received September 16, 1999. Accepted September 20, 1999. We gratefully acknowledge the funding and collaborative support received from the National Food Centre, Dublin, as part of E.U. programme AIR2-CT93-1691.

JF9905166